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LETTER TO THE EDITOR 

Existence of more limit cycles in general predator-prey models 

Xun-Cheng Huang 
Department of Mathematics, New Jersey Institute of Technology, Newark, New Jersey 
07102, USA 

Received 26 September 1988 

Abstract. Determining the number of limit cycles for a system is normally very difficult. 
In this letter, we present some sufficient conditions which guarantee that the general 
predator-prey model of Huang has at least three limit cycles around the equilibrium point. 
Our approach can be generalised to discuss the existence of 2n + 1 limit cycles in the model. 

To determine how many limit cycles a system has is not an easy problem. Most of 
the work reported on this topic has been the following (Zhang 1985). 

1. Finding the least upper bound of the number of limit cycles in the system 
concerned. 

2. Constructing examples to show that exactly n limit cycles can exist for the system. 
3. Providing some sufficient conditions that guarantee there are at least n limit 

4. Finding conditions that guarantee n and only n limit cycles exist in the system. 
Recently we proposed a general predator-prey model (Huang 1988a) and discussed 

the local and global stability, existence, non-existence and uniqueness of limit cycles 
of the model (Huang 1988b, Huang and Merrill 1988). In this letter, we provide some 
sufficient conditions that guarantee that the system has at least three limit cycles. 

cycles in the system. 

We consider the following model: 

where x is the prey density, y is the predator density, +(x), $(x) are the predator 
response functions, ~ ( y ) ,  p ( y )  are the predator density functions, + ( x ) F ( x ) / x  is the 
‘relative’ or ‘per capita’ growth function which governs the growth of the prey in the 
absence of predators, + ( x ) . r ( y ) / x  is the death rate of the prey due to the predator, 
p(y )$ (O) /y  is the death rate of predator in the absence of prey. 

(H,) 4, F, $, T,  p E C’[O, a), +(O) = ~ ( 0 )  = p ( 0 )  =0, F E  C’(0, a); +’> 0 for x 3 0, 
T’> 0, p’> 0 for y 3 0; there exists x* > 0 such that $(x*) = 0, $’(x*) > 0 and 
(x -x*)$(x) > 0 for x # x*; there exist positive constants m ,  and m2 such that 

Our fundamental assumptions are as follows. 

(HT) 4(x)  s m ,  + m2x for x 3 0. 

(H2) The curve ~ ( y ) - F ( x )  = O  is defined for all x>O. 
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(H3) F ( 0 )  E (0, oo), there exists a k >  x* such that F ( k )  = 0, F ' ( k )  < 0, F ( x )  > 0 for 
0 < x < k, and for any E> k, F' (E)  # 0 if F ( E )  = 0. Moreover, there exists a k* <a 
such that F ( k * )  = 0 and F ( x )  # 0, for any x > k*. 
(H4) There exist positive numbers M and E such that ~ ( y )  2 M p ( y )  for y 3 E and 
such that there exists a number y ,  with 

p ( y , ) > ( F ( x ) / M ) + &  for all ~ E [ x * ,  k]. 

It has been shown that very many predator-prey models satisfy these assumptions. 
It is also possible to have F ( 0 )  =CO in (H3) in most of this discussion. In that case 
(0,O) is no longer an equilibrium point. Moreover, we can easily extend 4, $, 7r and 
p to the whole real axis and consider, if necessary, 4, $, T, p E C'(-a?, +CO). 

(H,) there exists a k* such that F ( x )  < 0 for x > k*. 

Clearly, for system (2.1) there is only one equilibrium point ( x * ,  y * )  in R. 

For the global analysis we need to assume that: 

All our discussion is in the interior of the first quadrant R = { ( x ,  y ) :  x > 0, y > 0). 

Our uniqueness theorem of limit cycles is as follows. 

Theorem 1 (Huang 1988a, Huang and Merril 1988). If, in addition to assumptions 
(H1)-(H4), we let 

(i)  F ' ( x * )  > 0, 
(ii) - F ' ( x ) 4 ( x ) / $ ( x )  is non-decreasing for 0 < x < x* and x* < x < k, 

then the system (2.1) has a unique limit cycle around (x*, y * ) .  The limit cycle is stable 
and globally asymptotically stable in R if (H,) holds; otherwise it is locally asymptoti- 
cally stable. 

Consider the following auxiliary system: 

dx/dt  = 4(x)(F,(x) - d ~ ) )  
dy/dt = P ( Y ) $ ( x )  (2) 

x(0) = xo> 0 Y(O)=Yo>O i = 1,2. 

Suppose that (x*, y * )  is the only equilibrium point in R of system (2). That is, $(x*) = 0 
and r ( y * )  = F , ( x * ) =  F 2 ( x * ) .  Let P o = ( x * , y o )  with y o < y *  and T i  be the orbit of 
system (2) starting at Po. Also, suppose that Ai, Qi, Bi are the first points (in time 
spent) of T i  intersecting with the rays x = x* ,  y > y * ,  y = y* ,  x < x* and x = x*, y < y* ,  
respectively (as shown in figure 1). Denote ( x p ,  y p )  as the coordinates of the point P. 
Then we have the following. 

Lemma 1 .  If 

Fib) 4 

F , ( x )  2 F A X )  

if x E [O, x * ]  

if x E [x*, k ]  

with strict inequality for some x in [0, x * ]  and [x*, k ] ,  respectively, then 
(i) YAl>YA2, 
(ii) Y E ,  < 7 

(iii) xQ, < xQ2 and 
(iv) ~ ( y ~ , )  c Fi(xoi) if F l ( x )  2 0 for 0 s  x s x*, i = 1,2. 

(3) 
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\ 
\ .. - - F, (x ) -a (y )=O 

Figure 1. Full curves are for system (2), broken curves for system (3). 

for O ~ x d x " .  Hence the flow of (2) is always directed outside with respect to the 
flow of (3). Therefore (i)-(iii) hold. 

Suppose r, intersects with the prey isocline ~ ( y )  - F,(x) = O(0S x =z x*) at S I .  Then, 
since 

dyldt  < 0 

dxld t  < 0 

dx/dt  = 0 

dx/dt  > 0 

if O <  x < x* 

if O <  x < x* and F,(x) - ~ ( y )  < O  

if F,(x) - ~ ( y )  = 0 
if O <  x <  x* and F,(x)  - ~ ( y )  > 0 

( 5 )  

we have 
xs, xy, i = l , 2 .  

If F:(x) 2 0 for x E [0, x*], then 

d Y B , ) S  d Y S , )  = F I ( X S , ) S  F I ( X 0 , ) .  

Thus ( iv)  is verified and the proof of lemma 1 is completed. 

Now, following the arguments of the existence theorems of Huang (1988b) and Huang 
and Merrill (1988), there exists 6 > 0 such that 

Y o  - Y B , ( Y O )  < 0 for all Y o €  (096) .  ( 6 )  
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Here B, is the intersection of the orbit Tl(x* ,  yo) and the line segment x = x*, 0 < y < y*; 
ys , (yo) ,  the y coordinate of B,, is a continuous function of yo. 

We now fix 6 and find an x ,  E (x* ,  k )  such that F ( x )  > 0 for x E [x*,  x , ]  and all 
the orbits starting at (x* ,  yo)  with yo€ (6/2,  y*)  will be contained in the region 
{ ( x ,  y)  I y > 0,O < x < x,} .  Moreover, by the boundedness of solutions with the initial 
values x (0 )  = x*, y (0 )  = y o €  (6/2, y*)  (see, Huang 1988b, for example), we can assume, 
if a limit cycle in system (1) exists, it must be inside a circle. Assume it is inside the circle 

r o E  (0, Y*).  (7) ( x - x * ) ' + ( y - y  * ) 2 -  - r o  

a L =  min { K ' ( F ( X ) ) }  a2 = y* = 7 r - I (  F(X*)) .  

Let 

X E [ X * , X i l  

Suppose F'(x*)  > 0. There exists x2 E [x*,  x,] such that 

F ( x 2 )  = F(x*)  and F ( x )  3 F(x*)  for all x E [x*,  x2] .  

Moreover, since F (  k )  = 0, there exist xj E [ x 2 ,  x,] and xq E [ x ,  , k )  such that 

F(X3) = F(Xq) = 7r(a,). 

F,(x)  = F ( x )  

Define F, (x )  ( i  = 1,2) as 

0 s x x x 2  

x 4 < x <  k. 

Clearly, F i ( x )  is continuous and satisfies Lipschitz's condition. 
Now, consider the system 

dx/dt  = +(x) (F i (x )  - 4 ~ ) )  
dY/dt = P ( Y ) r l ( X )  

(9) 

and denote its orbit starting at (x* ,  yo) as Ti(x* ,  yo) ,  i = 1,2. We can prove the following. 

Theorem 2. In addition to (H1)-(H4), suppose system (1) satisfies 
(i) F ' ( x )  2 0 for 0 s  x s x* and F'(x*)  > 0, 
(ii) there exists j j  E (0, y* - ro) such that 

d j )  > F(XQ*( j ) )  

where Q2 is the intersection of T2(x*, j j )  and the line segment y = y*, 0 < x < x*. 
The system (1) has at least three limit cycles around (x* ,  y * ) .  

Proof: Define a function of yo as 

A Y O )  = Yo-YB,(Yo)  (10) 

where B,  is the intersection of Tl(x*, yo)  and the line segment x = x*, 0 < y < y*. 
Since F'(x*)  > 0, (x* ,  y * )  is unstable, and, if yo< y* and yo is sufficiently close 

to Y*, 

g(y0) > 0. (11) 
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Also, since system (1) satisfies the existence conditions of limit cycles (Huang 1988b, 
Huang and Merrill 1988), there is at least one stable limit cycle around (x", y * ) .  Thus, 
we can find a y ,  E ( y *  - ro,  y " )  such that 

d Y l )  = 0. (12) 
The stability of the above limit cycle implies that there exists 6 > 0 such that 

Since g(yo)  is continuous with respect to yo ,  there exist 

Y2E ( 1 9  Y l )  and Y3 E (0, J )  

d Y 2 )  = A Y 3 1  = A Y l )  = 0. 

such that 

Clearly each orbit starting at (x*, yi) ( i  = 1,2,3) is a limit cycle of system 1. We 
thus complete the proof of theorem 2. 

We would like to make the following remarks on our discussion and the related 

1. The condition (ii) in theorem 2 is not difficult to check since, by the uniqueness 
problems. 

of solutions, we can solve the separable equation 

_- dy P(YMX) 
dx - + ( X ) ( ~ Z - ~ T ( Y ) )  

x(0) = x* Y(0) = 1 
in 0 s x s x* and then determine x,,(J). 

2. A similar argument will result in the existence of 2n + 1 limit cycles in system (1). 
3. The study of model (1) is similar to that of Kuang (1988). But we would like 

to mention that Kuang's model is only a special case of our model with F ( 0 )  < 03 and 
F (x )  < O  for all x >  k. Also, the assumptions (HT), (H2) and (H4) (or something 
similar) are necessarily required by Kuang. Without these assumptions most of his 
results can be shown to be incorrect. As an easy example, Kuang claimed (1988, p 
57) that every trajectory of the system 

dxld t  =p(x ) (P  - 5 ( ~ ) )  x(0) = xo> 0 

d y l d t =  q ( y ) ( r - d x ) )  Y ( O ) = Y o > O  
with constant /3 > 0, is a closed orbit. But if we let 
t ( y ) = y  q ( y )  = y ( y + l )  p(x)  = q(x)  = q(x)  = x  and P = x o = y o =  r =  1 

then the above system satisfies all the hypotheses of Kuang (1988), but no periodic 
solutions exist. 



L66 Letter to the Editor 

In fact, in most of the arguments of Kuang, [ ( y )  and ~ ( y )  are automatically 
considered as y. For instance, according to the definition that the prey isocline is the 
curve along which the rate of prey growth is instantaneously zero (Freedman 1980), 
that of Kuang’s model should be [ ( y )  = x g ( x ) / p ( x ) .  But it was employed as y = 
x g ( x ) / p ( x )  (see, for example, Kuang 1988, p 60). 
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